13427980436
联系方式
  • 公司: 深圳精成学社数学方老师
  • 地址: 深圳福田区百花二路长安花园C座一楼
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  • 微信: 13427980436
  •  
  • 本站共被浏览过 131029 次

产品信息

更多...
价 格:面议

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

在不同的时期在不同的文化和国家中,数学教育试图达到不同的目标。

数学教育图书

数学教育图书

这些目标包括:

教授给所有学生的数字技巧。

教授给大部分学生的实用数学(算术,基础代数,平面和立体几何,三角学),使得他们有能力从事贸易或手工业。

早期的抽象代数概念教育(例如集合和函数)。

选择性的数学领域的教育(例如欧式几何)作为公理化体系的实例和演绎推理的一个模型。

选择性的数学领域的教育(例如微积分)作为现代社会的智力成就的一个实例。

教授给希望以科学为职业的学生的高等数学。

数学教育的方式和变化的目标一致。

不同水准的数学教授给不同年龄的学生。一个大致的对算术和代数的子课题的教学年龄的参考如下:

加法: 5-7岁;更多的位数8-9岁

减法: 5-7岁;更多的位数8-9岁

乘法 : 7-8岁;更多的位数9-10岁

除法: 8岁;更多的位数9-10岁

简单代数: 11-12岁

代数: 13岁以上